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Abstract:  This paper presents new strategies for the design of braced and unbraced frame structures that include 
concrete-filled steel tubes or steel reinforced concrete beam-columns as part of the seismic force resisting system. The 
paper first highlights experimental tests conducted on concrete-filled steel tube beam-columns subjected to cyclic biaxial 
bending plus axial compression. These tests provide new data for slender composite beam-columns that complement 
existing worldwide data. Corroborating analyses using a new mixed finite element beam formulation for composite 
members are presented. New approaches are then introduced for analysis and design of composite beam-columns, 
including determination of appropriate values of the flexural rigidities of composite beam-columns for use in 
second-order elastic analysis. The proposed stability assessment is based on Direct Analysis procedures, where member 
and frame stability are accounted for using reduced member rigidities and either directly modeling initial imperfections or 
including notional horizontal loads in lieu of calculating member effective length. Validation of these new approaches for 
design is made through comparison with worldwide experimental tests on composite members. 

 
 
1.  INTRODUCTION 
 

Composite frames have been shown to be a sensible 
option for use as the primary lateral resistance system of 
building structures; and in many cases offers significant 
advantages over other lateral resistance systems (Hajjar 
2002). However, there is a notable lack of quantitatively 
justified guidance for design of these structures. Specifically, 
little guidance is available regarding the value of stiffness 
that should be used in elastic analyses of composite frames, 
the recently developed direct analysis method for stability 
design of steel structures (AISC 2010) has not been 
validated for use with composite structures, and there is little 
data to justify the structural system response factors (i.e., R, 
Cd, and o) given in the specifications for seismic design of 
composite frames. This paper presents experimental and 
analytical work conducted as part of a NEES research 
project to build core knowledge on the behavior of 
composite columns and to develop rational design 
recommendations.  
 
 
2.  FULL SCALE SLENDER CFT BEAM-COLUMN 
EXPERIMENTS 

 
2.1 Test Specimens 

The specimens in the experimental program were 

selected to be both relatively slender in length and in 
width-to-thickness ratio. Few specimens with these attributes 
have been tested in prior research as noted in experimental 
databases (Leon et al. 2005, Goode and Lam 2011). In total, 
eighteen specimens were tested with variations in steel tube 
shape and size, length, and concrete strength (Table 1).  

The tests were conducted at the Multi-Axial 
Sub-Assemblage Testing (MAST) facility at the University 
of Minnesota. The MAST system (Figures 1 and 2) consists 
of a stiff steel crosshead connected to 4 vertical actuators and 
2 actuators in both horizontal directions, allowing 6 DOF 
control of the crosshead. Thick plates were welded to the 
ends of the specimens. The bottom plate rigidly connected 
the specimen to the strong floor and the top plate rigidly 
connected the specimen to the crosshead. Through control of 
crosshead different end conditions could be simulated, most 
often a fixed-free (K=2) condition was enforced.  

The axially stiff yet flexurally compliant CFT 
beam-column specimens were a unique challenge to control. 
The axial strength of some of the specimens exceeded the 
vertical capacity of the system (5,900 kN) and the specimens 
retained strength at the lateral displacement capacity of the 
system (406 mm) although they were often being held in an 
unstable configuration by the crosshead. The specimens 
were subjected to a variety of successive load histories, 
providing a wealth of data useful for developing design 
recommendations and calibration of advanced nonlinear 



 

 

computational models.  
The first load case subjected the specimens to 

concentric axial load. Most specimens were held in a 
fixed-free (K=2) configuration [specimens 1-C5-18-5 and 
18-C5-26-12 were held in a fixed-fixed (K=1) configuration]. 
Specifically, lateral forces and bending moments at the 
crosshead were force controlled to zero, while the specimen 
was loaded in axially in displacement control until the 
critical load was reached. The twist DOF was held in 
displacement control to zero due to the low torsional 
stiffness of the specimens.  

 
 

Table 1  Test Matrix 

 
 
 
 
The second load case subjected the specimens to 

combined axial compression and uniaxial bending. This was 
achieved with vertical force control at a specified load and 
displacement control of the lateral DOFs. Again, most 
specimens were held in a fixed-free (K=2) configuration 
with bending moments at the crosshead were force 
controlled to zero [specimens 1-C5-18-5 and 18-C5-26-12 
were held in a fixed-fixed (K=1) configuration]. The third 
load case maintained the same control as the second load 
case, but subjected the specimen to combined axial 
compression and biaxial bending.  

Additional latter load cases were conducted, subjecting 
the specimens to torsion or alternate end conditions. Full 
details of the test program including these load cases and 
discussions on wet concrete effects are presented elsewhere 
(Perea 2010).  

 

Figure 1  Specimen 1-C5-18-5 Before Testing 

 

Figure 2  Specimen 1-C5-18-5 During Testing 

 
 
 
 

Specimen D  or H B t f' c F y L

(mm) (mm) (mm) (MPa) (MPa) (mm)

1-C5-18-5 141 --- 3.15 37.9 383 5,499

2-C12-18-5 324 --- 5.92 38.6 337 5,499

3-C20-18-5 508 --- 5.92 40.0 328 5,525

4-Rw-18-5 508 305 7.39 40.7 365 5,537

5-Rs-18-5 508 305 7.39 40.7 365 5,537

6-C12-18-12 324 --- 5.92 91.0 337 5,499

7-C20-18-12 508 --- 5.92 91.0 328 5,534

8-Rw-18-12 508 305 7.39 91.7 365 5,553

9-Rs-18-12 508 305 7.39 91.7 365 5,553

10-C12-26-5 324 --- 5.92 54.5 335 7,950

11-C20-26-5 508 --- 5.92 55.8 305 7,995

12-Rw-26-5 508 305 7.39 56.5 406 7,957

13-Rs-26-5 508 305 7.39 57.2 383 7,969

14-C12-26-12 324 --- 5.92 80.0 383 7,963

15-C20-26-12 508 --- 5.92 80.0 293 7,976

16-Rw-26-12 508 305 7.39 80.7 381 7,957

17-Rs-26-12 508 305 7.39 80.7 380 7,963

18-C5-26-12 141 --- 3.15 80.7 383 7,941



 

 

2.2 Experimental Results 
Typical results from load case 2 are shown in Figure 3. 

These results are from one axial load level, two cycles were 
performed. From these results, limit points (points on 
beam-column strength interaction surface) can be identified 
as the peak first order moment, or peak lateral load. It is 
noted that the second order moment continued to rise since 
the cross-section strength has not yet been reached and 
specimen was held in an unstable configuration by the 
displacement control of the crosshead. For each specimen, 
and each axial load level, a limit point was identified. The 
limit points for the specimens are presented in Figure 4 
along with the design interaction diagram constructed using 
the plastic stress distribution method and points A, C, and B 
(AISC 2010). Since the ratio of axial load at point A (the 
pure axial strength) to the axial load at point C (a point axial 
load and moment equal to the pure bending strength) differs 
among the specimens, the range of interaction diagrams is 
shown with dashed lines and the average interaction diagram 
is shown as a solid line.  

 
 

 

Figure 3  Determination of the Limit Point 

 
 
The results of load case 2 also allow for an evaluation 

of the effective elastic stiffness (EI) of the composite section. 
The slope of force-deformation response (e.g., Figure 3) 
following load reversals was recorded (the very stiff 
response at the load reversal is attributed to friction in the 
loading system; care was taken to exclude these effects from 
the slope measurements). The recoded slope is then 
compared to an equivalent slope obtained from an elastic 
second-order analysis of a cantilever column with the same 
length and axial load. For each slope measured from the 
experimental data, a value of stiffness (EI) was determined 
such that the slope from the elastic analyses is equal to that 
from the experimental results. These results are normalized 
assuming that the contribution of the steel section is equal to 
its gross properties (EsIs) as described in Equation (1) 

 

   /measured s s c cC EI E I E I   (1) 

 

The parameter can be regarded as the concrete 
contribution, a value of C = 1 would indicate that both the 
steel and concrete are contributing their full gross section 
properties to the flexural stiffness while a value of C = 0 
would indicate that the concrete does not contribute at all to 
the flexural stiffness. The values of C obtained from load 
case 2 ranged from 0.30 to 0.45 with an average value of 
approximately 0.40 (Perea 2010). 

 
 

Figure 4  Second-Order Limit Points  
 

 
3. MIXED FINITE ELEMENT MODELING OF 

COMPOSITE FRAME SYSTEMS 

Frame analyses using distributed plasticity 
beam-column elements strike a favorable balance of 
computational efficiency and accuracy. Additionally, mixed 
formulations (defined here as treating both element 
displacements and stress resultants as primary state 
variables) allow for accurate modeling of both geometric 
and material nonlinearities. Tort and Hajjar (2010) 
developed a three-dimensional mixed beam element for the 
analysis of composite frames that include rectangular 
concrete-filled steel tube members, validating against a large 
number of experimental tests of composite members and 
frames. This finite element was adapted and further 
validated against an additional sets of experimental tests on 
circular concrete-filled steel tube members (Denavit and 
Hajjar 2012) and steel reinforced concrete members 
(Denavit et al. 2011).  

The formulation relies on accurate constitutive relations 
to achieve accurate results. Numerous uniaxial constitutive 
relations have been proposed for composite members (e.g., 
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El-Tawil and Deierlein 1999; Sakino et al. 2004). Typically, 
the relations are unique to the member type (i.e., SRC, 
RCFT, CCFT) because of differences in behavior, namely 
different confinement of the concrete, different residual 
stresses patterns, and different susceptibility to local 
buckling (which is often modeled as a material response). 
Different models use different assumptions and methods of 
calibration, but they generally strive to mimic the response 
of short concentrically loaded columns.  

As part of the mixed beam formulation, a family of 
accurate uniaxial cyclic material models have been 
developed and reported by Tort and Hajjar (2007) for RCFTs, 
Denavit and Hajjar (2012) for CCFTs, and Denavit et al. 
(2011) for SRCs. The constitutive relation for the concrete 
core is adapted from the rule-based model of Chang and 
Mander (1994). The tensile branch and the cyclic rules were 
used without changes. However, the compressive branch 
was altered to reflect the state of confinement existing in the 
composite members. The steel model is based on the 
bounding-surface plasticity model of Shen et al. (1995). The 
model is used without modifications for the wide flange 
shapes within SRC sections; however, several modifications 
were made to model the behavior of the cold formed steel 
tubes in CFT sections. To model the built-in residual stress 
from cold-forming, an initial plastic strain is assumed. Local 
buckling is assumed to initiate when a certain critical strain 
has been reached. For compressive strains greater than the 
local buckling strain, the response is assumed to be a linear 
descending branch followed by a constant residual stress 
branch. 

To validate the models, a large number of comparative 
analyses were performed (Tort and Hajjar 2007, Denavit and 
Hajjar 2012, Denavit et al. 2011). Sets of experimental data 
covering a wide variety of material properties, geometric 
properties, and loading configurations assembled. The 
slender beam-column tests described in this work were 
included in the validation study. Example results, comparing 
experimental and computational response of load cases 1 
and 2 of specimen 11-C20-26-5, are shown in Figure 5.  
 

 

4. STABILITY ANALYSIS AND DESIGN OF 

COMPOSITE FRAME SYSTEMS 

The direct analysis method of stability design 
established within the AISC Specification for Structural 
Steel Buildings (AISC 2010) provides a straightforward and 
accurate way of addressing frame in-plane stability 
considerations (White et al. 2006). In this method, required 
strengths are determined with a second-order elastic analysis 
where members are modeled with a reduced stiffness and 
initial imperfections are either directly modeled or 
represented with notional lateral loads. The method allows 
for the computation of available strength based on the 
unsupported length of the column, eliminating the need to 
compute a K factor. The validity of this approach for steel 
structures has been established through comparisons 
between fully nonlinear analyses and elastic analyses 

(Surovek-Maleck and White 2004). However, to date, no 
appropriate reduced elastic stiffness values have been 
developed nor has the methodology in general been 
validated for composite members. 

 
 

 

Figure 5  Validation Results (Specimen 11-C20-26-5) 

 
 
In order to address these current needs in design, a large 

parametric study is being been conducted. The study focused 
on two related aspects of stability design. First is the 
development of an effective elastic stiffness, EIelastic, for use 
in frame analyses with composite beam-columns. Second is 
the development and validation of Direct Analysis 
recommendations for strength design of composite systems 
as presented in detail in Denavit et al. (2012), the parametric 
study consists of comparisons between results from fully 
nonlinear analyses and elastic analyses on a set of 
benchmark frames. The fully nonlinear analyses are 
performed using the mixed beam finite element described 
above with the exception that simpler constitutive relations 
are selected to better correspond to assumptions common in 
the development of design recommendations.  

The results of the study indicate that the Direct Analysis 
method can be extended to composite members with 
judicious selection of the elastic flexural stiffness and design 
interaction curve. One proposed option for the elastic 
flexural stiffness, EIelastic, for CFT members is given in 
Equation (2) (Denavit et al. 2012). This value is subject to 
the stiffness reductions described within the Direct Analysis 
method. 

 

 30.75elastic s s c cEI E I C E I   (2) 
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The design interaction curve for a beam-column based 
on the plastic stress distribution method was shown to be 
suitable a majority of structures. This diagram is constructed 
with three anchor points: Point A, the pure axial strength; 
Point B, the pure bending strength; and Point C, a point axial 
load and moment equal to the pure bending strength (AISC 
2010).  

 
4.1 Experimental Validation of the Design Methodology  

Since the design methodology was developed based on 
computational results, it is useful to validate the proposed 
recommendations against experimental data. The slender 
beam-column tests presented above are well suited for a 
comparison since second-order effects were significant and 
the specimens were well instrumented. Both strength and 
stiffness comparisons can be made using the results from 
load case 2.  

The factor, 0.75C3, applied to the gross flexural stiffness 
of the concrete component in the elastic flexural stiffness 
expression given in Equation (2) is comparable to the factor, 
C, in Equation (1). The factor, 0.75C3, ranges from 0.52 to 
0.58 for all of the slender beam-column specimens, where 
C3 is computed with Equation (3). As stated above, the 
average value of C measured from load case 2 was 0.40. 
However, noting the significant scatter of the experimental 
results, the value proposed for design compares well to the 
experimental results.  

Further comparisons are shown in Figures 6 through 9, 
where the limit points identified in load case 2 are plotted 
with interaction curves obtained using fully nonlinear 
analyses and the proposed design methodology for a subset 
of the specimens. The blue squares are the second-order 
internal forces at the limit point. Eight limit points were 
identified for each specimen in load case 2, one for each half 
cycle at each axial load level. The blue circles are the 
first-order applied forces at the limit point; the first-order 
moments are calculated as the product of the specimen 
length and the applied lateral load at the top of the 
beam-column.  

The red interaction curves were developed using the 
same fully nonlinear model as employed to develop the 
design recommendations (Denavit et al. 2012) with the 
exception that measured initial out-of-plumbness was used 
in lieu of the nominal initial out-of-plumbness of L/500. A 
series of non-proportional analyses were performed at 
different axial load levels identifying the limit point as when 
the lowest Eigenvalue reached zero. The dashed curve 
represents the second-order internal forces and the solid 
curve represents the first-order applied forces.  

The black dashed line is the design interaction curve 
constructed from Points A, C, and B (AISC 2010) with K=1 
as specified in the Direct Analysis method. The black solid 
line is the first-order applied force interaction diagram. This 

curve is constructed by determining the applied loads that 
result in internal forces on the design interaction curve when 
modeled as prescribed by the Direct Analysis method (i.e., 
elastic second-order analysis, reduced elastic stiffness, and 
additive notional loads) with the exception that the notional 
loads were selected to represent the measured initial 
out-of-plumbness. The grey solid curve is the first-order 
applied force interaction diagram using nominal notional 
loads.  

At both the second-order internal force level and the 
first-order applied force level, the fully nonlinear analysis 
and design methodology correspond well to the 
experimental results. The second-order internal forces are 
generally underestimated by the design interaction curve and 
better represented by the fully nonlinear analysis; this is due 
in part to the “bulge” in the interaction diagram near the 
balance point being neglected in the design interaction 
diagram.  

The initial imperfections of the specimens are seen to 
have a significant effect at the first-order applied force level. 
The initial out-of-plumbness of specimen 8-Rw-18-5 
(L/121) was greater than nominal, the effect of this can be 
seen in the lack of symmetry of the experimental and 
analytical results (Figure 8). The points that appear 
unconservative (i.e., blue circle inside the grey solid curve) 
are accurately captured when the notional load was adjusted 
to represent the measured imperfections, indicating that the 
lower strengths are primarily due to the greater than nominal 
initial imperfections.  

 
 

5.  CONCLUSIONS 
Experimental and analytical work performed as part of 

a current NEES project has been presented. A series of 
full-scale slender beam-column tests were performed, 
subjecting CFTs to a wide range of loading. Axial 
compression-bending moment limit points and effective 
elastic stiffness were identified. A mixed beam finite element 
formulation specific to steel-concrete composite members 
was developed and utilized to develop stability design 
recommendations. One option for a proposed stability 
design methodology, developed in an ongoing study, was 
validated against the experimental results, indicating that 
safe and accurate results can be obtained using the Direct 
Analysis method with steel-concrete composite members.  
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Figure 6  Strength Comparisons (Specimen 4-Rw-18-5) 

 

Figure 7  Strength Comparisons (Specimen 5-Rs-18-5) 
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